Robot Arm Tutorials

Friday Facts 19: Marlin for Robot Arms

Today I’m going to show you how to set up Marlin firmware – the code in the robot brain – for your board so it thinks it is a robot arm and I will be using the Sixi 3 as my example. When we’re done we’ll have a 6 axis machine ready to receive gcode from apps like Robot Overlord.

Building a custom robot arm is easier if one uses common hardware. Thanks to the popularity of 3D printers it is now super easy to get stepper motors, limit switches, and MCUs that drive five, six, or even more motors. Marlin takes away all the headache and lets anyone talk to a robot with gcode, the standard language of CNC machines like 3D printers, mills, and lathes.

The major steps are:

  1. Fork Marlin
  2. Customize it
  3. Flash your board
  4. Test it

Fork Marlin

To “fork” is to make a special copy. it’s special because it includes a feature to update your copy with changes to the original. When the Marlin developers improve something, you can press a button and get all their updates.

The code for Marlin is available at I have a fork for robot arm Sixi 3 already started. You can get that fork as well right here:

Make sure that (1) the branch is set to sixi3, then (2) click the code button and then (3) Open with Github Desktop or Download Zip. If it’s a ZIP you’ll have to unpack it somewhere like Documents/Github/Marlin.

Customize Marlin

Here’s a list of lines in Configuration.h that I’ve changed. The bold parts are unchanged so you can use that to search the file. The stepper motors in Marlin are named – internally only – as X, Y, Z, I, J, K.

#define STRING_CONFIG_H_AUTHOR “(Marginally Clever, Sixi3)”


#define CUSTOM_MACHINE_NAME “Sixi 3 robot arm”

#define EXTRUDERS 0

Because it’s a RUMBA board I also had to redefine a few of the pin settings. Normally all supported boards are defined in Marlin/src/pins/*.

#define I_STEP_PIN                         23
#define I_DIR_PIN                          22
#define I_ENABLE_PIN                       24
#define J_STEP_PIN                         26
#define J_DIR_PIN                          25
#define J_ENABLE_PIN                       27
#define K_STEP_PIN                         29
#define K_DIR_PIN                          28
#define K_ENABLE_PIN                       39

#undef Y_MAX_PIN
#undef Z_MIN_PIN
#undef Z_MAX_PIN

#define I_MIN_PIN                           34
#define J_MIN_PIN                           33
#define K_MIN_PIN                           32

The type of driver and the external name of each motor is next.

#define X_DRIVER_TYPE  A4988
#define Y_DRIVER_TYPE  A4988
#define Z_DRIVER_TYPE  A4988
//#define X2_DRIVER_TYPE A4988
//#define Y2_DRIVER_TYPE A4988
//#define Z2_DRIVER_TYPE A4988
//#define Z3_DRIVER_TYPE A4988
//#define Z4_DRIVER_TYPE A4988
#define I_DRIVER_TYPE  A4988
#define J_DRIVER_TYPE  A4988
#define K_DRIVER_TYPE  A4988


  #define AXIS4_NAME 'U' // :['A', 'B', 'C', 'U', 'V', 'W']
  #define AXIS4_ROTATES
  #define AXIS5_NAME 'V' // :['B', 'C', 'U', 'V', 'W']
  #define AXIS5_ROTATES
  #define AXIS6_NAME 'W' // :['C', 'U', 'V', 'W']
  #define AXIS6_ROTATES

Limit switches are tricky because the original Sixi 3 still doesn’t have them. (The plan is a new PCB that has always-on sensors). For Sixi 3 only, I have to trick the sensor code. When the robot turns on it will believe it has already homed, no matter where it is. A better robot with switches would call G28 to find home, and then the invert would depend on the type of switch (normally open vs normally closed) and I don’t remember what plug does.




Motors also need gearbox and speed settings. Sixi 3 has a 70:1 harmonic gearbox and then a further pulley reduction in each unit. Since each motor does 200 steps per turn, that makes 105 steps per degree!

#define DEFAULT_AXIS_STEPS_PER_UNIT   { 105, 105, 105, 105, 105, 105 }

105 steps per degree * 5 deg/s = 525 steps per second. Impressive for such tiny NEMA17 motors. It might not be fast but it works and it’s affordable. Cheap, fast, good… pick two.

#define DEFAULT_MAX_FEEDRATE          { 5,5,5,5,5,5 }

#define CLASSIC_JERK // uncommented this to turn it on

#define S_CURVE_ACCELERATION // uncommented this to turn it on

I make sure to leave motors on so the arm doesn’t suddenly “go limp” at the worst time.

#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
#define DISABLE_I false
#define DISABLE_J false
#define DISABLE_K false

Range of motion is important, Marlin won’t let you go outside the limits. Remember this code was written for square box 3D printers, so some of the terms are a little silly for our needs.

// The size of the printable area
#define X_BED_SIZE 360
#define Y_BED_SIZE 360

// Travel limits (linear=mm, rotational=°) after homing, corresponding to endstop positions.
#define X_MIN_POS 0
#define X_MAX_POS 360
#define Y_MIN_POS 0
#define Y_MAX_POS 360
#define Z_MIN_POS 0
#define Z_MAX_POS 360
#define I_MIN_POS 0
#define I_MAX_POS 360
#define J_MIN_POS 0
#define J_MAX_POS 360
#define K_MIN_POS 0
#define K_MAX_POS 360

#define MIN_SOFTWARE_ENDSTOPS  // but no sub-values like MIN_SOFTWARE_ENDSTOP_X
#define MAX_SOFTWARE_ENDSTOPS  // but no sub-values like MAX_SOFTWARE_ENDSTOP_X

#define EEPROM_SETTINGS // save important data to EEPROM


#define REPRAP_DISCOUNT_SMART_CONTROLLER // or your favorite flavor here

#define NUM_SERVOS 1 // for the gripper

Flash your board

Press the Compile button (1) to check for errors. Press the Upload button (2) to send it to your connected device. Press the Connect button (3) to open a serial monitor and check that your device says it is now a Marlin device. If all goes well, you’re ready to rock!

Test your new device

Even before your board is installed in an arm you should be able to home it with G28 and move it with G0/G1. Remember: every bug is just a test you didn’t run!

Final thoughts

Now that you have a 3D printer board setup to run Marlin, it should be able to receive angle values as gcode. Each set is one forward kinematic pose of the arm. Moving between two poses will send the arm in curving arcs. Lots of poses close together will create the look of straight lines. Planning all those poses is easy for apps like Robot Overlord. That’s why I wrote it!

Got more questions? Something out of date in this post? Join us on Discord.


Friday Facts 12: How to use Marlin in a Robot Arm

Building a robot arm is one thing, but what about writing the code to make it run? Some people want to learn the fine points of precision stepper motor control, forward and inverse kinematics, and then debug all that stuff. For the rest, working together gets the job done faster. For those people the Marlin 3D printer firmware is a great option. Today I’m going to show how I tweaked it to run in the Sixi 3 robot arm. Please share your experience with us so we can improve this post.


Marlin 3D printer firmware is the code in the brain of a very large number of printers. It is very flexible with a few changes. Most people might think of printers as having four motors – one for each direction and one for the extruder. But recent changes mean that Marlin can run up to six motors. That’s great for us, because most robot arms are 6 or less.

With Marlin installed you’ll be able to control the angle of each motor by sending gcode commands and even drive them simultaneously. With Marlin’s homing routines you could locate position, and new options coming in the near future will give real time feed back (more on that later)

What needs to be tweaked

Pour yourself a drink and settle in. This list will touch at least two files and take some time… OR you can use the sixi3 branch I maintain and adjust it for your speeds and gear ratios.

I keep trying new ways to make this list less dry. What do you think?


Old valueNew Value
#define STRING_CONFIG_H_AUTHOR “(none, default config)”#define STRING_CONFIG_H_AUTHOR “(Sixi3, Marginally Clever Robots)”
//#define CUSTOM_MACHINE_NAME “3D Printer”#define CUSTOM_MACHINE_NAME “Robot Arm”
//#define LINEAR_AXES 3#define LINEAR_AXES 6
#define AXIS4_NAME ‘A’#define AXIS4_NAME ‘U’
#define AXIS5_NAME ‘B’#define AXIS5_NAME ‘V’
#define AXIS6_NAME ‘C’#define AXIS6_NAME ‘W’
#define EXTRUDERS 1define EXTRUDERS 0
//#define USE_XMIN_PLUG
//#define USE_YMIN_PLUG
//#define USE_ZMIN_PLUG
//#define I_DRIVER_TYPE A4988
//#define J_DRIVER_TYPE A4988
//#define K_DRIVER_TYPE A4988
#define E0_DRIVER_TYPE A4988
#define I_DRIVER_TYPE A4988
#define J_DRIVER_TYPE A4988
#define K_DRIVER_TYPE A4988
//#define E0_DRIVER_TYPE A4988
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 400, 500 }#define DEFAULT_AXIS_STEPS_PER_UNIT { 105, 105, 105, 105, 105, 105 }
#define DEFAULT_MAX_FEEDRATE { 300, 300, 5, 25 }#define DEFAULT_MAX_FEEDRATE { 5, 5, 5, 5, 5, 5 }
#define DEFAULT_MAX_ACCELERATION { 3000, 3000, 100, 10000 }#define DEFAULT_MAX_ACCELERATION { 10, 10, 10, 10, 10, 10 }
#define E_ENABLE_ON 0 // For all extruders
//#define I_ENABLE_ON 0
//#define J_ENABLE_ON 0
//#define K_ENABLE_ON 0
//#define E_ENABLE_ON 0 // For all extruders
#define I_ENABLE_ON 0
#define J_ENABLE_ON 0
#define K_ENABLE_ON 0
#define INVERT_Y_DIR true#define INVERT_Y_DIR false
//#define INVERT_I_DIR false
//#define INVERT_J_DIR false
//#define INVERT_K_DIR false
#define INVERT_I_DIR false
#define INVERT_J_DIR false
#define INVERT_K_DIR false
//#define I_HOME_DIR -1
//#define J_HOME_DIR -1
//#define K_HOME_DIR -1
#define I_HOME_DIR -1
#define J_HOME_DIR -1
#define K_HOME_DIR -1
define X_BED_SIZE 200
define Y_BED_SIZE 200
//#define X_BED_SIZE 200
//#define Y_BED_SIZE 200
#define X_MIN_POS 0
#define Y_MIN_POS 0
#define Z_MIN_POS 0
#define X_MIN_POS -360
#define Y_MIN_POS 360
#define Z_MIN_POS -360
#define X_MAX_POS 360
#define Y_MAX_POS -360
//#define I_MIN_POS 0
//#define I_MAX_POS 50
//#define J_MIN_POS 0
//#define J_MAX_POS 50
//#define K_MIN_POS 0
//#define K_MAX_POS 50
#define I_MIN_POS -360
#define I_MAX_POS 360
#define J_MIN_POS -360
#define J_MAX_POS 360
#define K_MIN_POS -360
#define K_MAX_POS 360
#define HOMING_FEEDRATE_MM_M { (50*60), (50*60), (4*60) }#define HOMING_FEEDRATE_MM_M { (4*60), (4*60), (4*60), (4*60), (4*60), (4*60) }
//#define SDSUPPORT#define SDSUPPORT


define AXIS_RELATIVE_MODES { false, false, false, false }#define AXIS_RELATIVE_MODES { false, false, false, false, false, false }
#define HOMING_BUMP_MM      { 5, 5, 2 }
#define HOMING_BUMP_DIVISOR { 2, 2, 4 }
#define HOMING_BUMP_MM      { 5, 5, 5, 5, 5, 5 }
#define HOMING_BUMP_DIVISOR { 2, 2, 2, 2, 2, 2 }


  • MOTHERBOARD is your choice of brain board. Anything Mariln supports AND has 6 axies will work.
  • DEFAULT_AXIS_STEPS_PER_UNIT is the gear ratio at the given joint. For all sixi3 gearboxes the ratio is 70:1 (harmonic) * 54:20 (timing belt) * 200/360 (for 1.8 degree stepper motors at full step) = 105.
  • Because the gear ratio is so high the motors are not physically able to exceed the DEFAULT_MAX_FEEDRATE. If you use faster motors or a faster brain board you may be able to improve on these numbers.
  • EEPROM_SETTINGS, SDSUPPORT, and REPRAP_DISCOUNT_SMART_CONTROLLER are not required. I use these to tweak settings for testing, run programs from the SD card, and to have an LCD panel on my robot.
  • Every other change is to adjust from 3 axies to 6.

Homing and Real time feedback

There are some exciting new features coming to Marlin that should make real time feedback possible. This means we’ll know the robot position without having to guess or to home. It also means we can tell when the actual position deviates from the expected position too much that a collision has occurred and that can save a lot of trouble! The new configuration options to explore are:

  • REALTIME_REPORTING_COMMANDS adds some “quick commands” that get processed before anything else in the gcode buffer of the robot. Great for emergency breaking and for requesting position information (Gcode “S000”)
  • M114_REALTIME adds “M114 R” which reports the real-time position of the robot instead of the projected position at the end of the planned moves.
  • I2C_POSITION_ENCODERS is a first pass at adding real time sensors. This will no doubt be expanded later to include other types and features.

Further Reading

The Marlin Configuration guide online

robot arms in Robot Overlord

Friday Facts 11: How to add a robot arm to Robot Overlord (2022)

Robot Overlord is going to be the inkscape, the VLC, the Steam of robot arms – the one vendor-agnostic interface everyone teaches, knows, and loves. In order to get there it has to support every robot arm under the sun. This post is for robot arm makers that want to save time by not writing all their own code.

Some of the arms already available

Did you know Robot Overlord speaks natively to Marlin 3D printer firmware? Save even more time by using the same firmware.

You will need

  • A 3D CAD model of your robot arm
  • The D-H parameters of the arm in the same pose as it appears in your CAD file
  • The ability to write Java code for the Robot Overlord project
  • Some familiarity with git (forks, commits, pull requests)

Prepare your CAD file

It is easiest to export your arm into discrete moving sections, all of which with the same origin at the bottom center of the base of the arm (see slide 1). This is the same origin as the D-H parameters.

A meca500 robot, color coded with the base and six parts. the origin would be in the red part, on the same axis of rotation as the pink part

To help Robot Overlord run smoothly and to protect your IP it is recommended that you decimate the model by removing all hidden internal structures and components. Consider leaving screw heads while removing the threaded sections to save many megabytes of file size.

Each discrete section should be exported as an OBJ or STL file. (more on this later.)

The exported files should be located in /src/main/resources/[your robot folder]/. So if your robot is named Foo then it would be /src/main/resources/foo/. It would be consistent to name them base, j0, j1, etc.

Prepare your Robot Overlord class

In Robot Overlord’s /src/main/java/com/marginallyclever/robotOverlord/robots/robotArm/implementations you will find the collection of currently supported robot arms. It may be easiest to copy one of these classes and modify it for your purposes. Here is the minimum needed to code your arm. Every instance of Foo should be replaced with your class name.

public class Foo extends RobotArmIK {
	private static final long serialVersionUID = 1L;

	public Foo() {
		setName("Foo v1");  // the name that appears to users.
	protected void loadModel() {
		setBaseShape(new Shape("Base","/Foo/j0.obj"));

		// The DH parameters and the model file, added in order from J0 ... J5.  
		// angles are degrees, distances are centimeters.
		// name d r alpha theta thetaMax thetaMin modelFile
		addBone(new RobotArmBone("X", 7.974,     0,270,  0,170,-170,"/Foo/j1.obj"));
		addBone(new RobotArmBone("Y", 9.131,17.889,  0,270,370, 170,"/Foo/j2.obj"));
		addBone(new RobotArmBone("Z",     0,12.435,  0,  0,150,-150,"/Foo/j3.obj"));
		addBone(new RobotArmBone("U",     0,     0,270,270,440, 100,"/Foo/j4-6.obj"));
		addBone(new RobotArmBone("V",15.616,     0, 90, 90,270,-90,"/Foo/j5-6.obj"));
		addBone(new RobotArmBone("W",  5.12,     0,  0, 180,360,   0,"/Foo/j6-6.obj"));


Now that the arm can be loaded by the app it needs to be on the menu of things that can be created by the user. In /src/main/java/com/marginallyclever/robotOverlord/ add your new class:

public class EntityFactory {
	private static Class<?> [] available = {
		// ...
		com.marginallyclever.robotOverlord.robots.robotArm.implementations.Foo.class,  // "Foo" must be your class name.
	// ...

Now when you run the application and open the Add menu your robot name will appear.

‘Foo v1’ will appear on this list

Model size and orientation fixes

It is possible that your model appears in Robot Overlord too large, too small, or the parts are rotated in a strange way. My solution is to use a modelling program like Blender to rotate, scale, decimate, and even texture the model.

Forward and Up will control the rotation. +Z is always up in a Robot Overlord scene.

Selection Only will simplify your exporting from Blender. In the image above it will only export J2.

Scale will control the size. For models that appear in meters instead of centimeters, choose 0.1. If your model is imperial, you’ll probably want 2.54.

Now share it with …the world!

You’ve changed the code, you’ve massaged the model, it runs on your machine. Now to share it with everyone else! A pull request from you to the Robot Overlord project will tell the dev team that your stuff is ready. This is the best way to make sure your model gets in the way you want it.

No time? Let us do it for you.

We can add your model(s) to our system. Contact us! We’re looking to collaborate and work with everyone. Writing the class is free; preparing the CAD files is specialized work we outsource and will quote.

What about URDF files?

URDF is the Unified Robot Description Format, part of ROS, the Robot Operating System. ROS is a nice system but much harder to get running – part of the reason I work on Robot Overlord. Join the Robot Overlord github project and help make it happen? Imagine what we could do together!


Friday Facts 5: How (and why) be a Makelangelo Tester

To describe the mood here this week in a word it would be “challenged”. My productivity is greatly affected by the all-grey of Vancouver winters – I can’t work if I’m not happy and it takes a lot more time to find my happy place each day in the winter.

How (and why) be a Makelangelo Tester

Not too long ago, with the help of the Marlin 3D printer firmware team, I managed to switch to Marlin. This was a huge time savings for me as I can now focus on making the software better. To make it great – for me, for you, for everyone – as fast as possible I need to shorten the cycle time – the time it takes to check a new feature works right.

Maybe you’ve noticed the app is missing something you need. Maybe you found a bug. Now for a lot of programs out there the way to tell them about a bug is not obvious, hard to achieve, and the turnaround time is … who knows.

I want to make a great app and put new issues to bed quick-fast. To me, the report-fix-test loop should be as short and fast as can be. I hope you agree! That is why I’m asking you to help me help you. Become a tester: to shorten the loop.


With our without being a tester, the process starts by going to the Makelangelo code project and filing a good bug report. The bug report comes with a template to fill out that should make writing your report painless.


Then I or some other brave soul will (maybe) ask follow up question and (definitely) work to make the thing happen. Some are easier than others in surprising ways.


Now this is the sticky part of the loop. When I write code I bang away in the magic language of the drow elves, cursed to roam the underdark. When the machine says I have atoned enough, it produces a jar file. This is then packaged with other essentials like the README file and somehow delivered to you to give it a little run-see, a little double sanity check, a thumbs up or down.

The packaging and delivery process is slow. So slow. In a more perfect world you should be able to say “get me the latest update from Dan!” and moments later be able to run it. Two clicks, right? Well friends, read on.

Thank you

Making it easy to make you happy is … it’s the greatest gift. A win/win. Thank you. It’s very easy to get lost in the weeds with code, and your input gives me clear focus and direction.

Special shout out to CaptFuture, Headly, and OopsHeIsDead for being awesome contributors this week.

Final thoughts

Here’s a gallery of recent Makelangelo Software updates to the app. Many of these changes were brought about by you and yours. I’ll continue to write, you continue to stay awesome. Until next week, be well!